Deletion of the Delta12-oleic acid desaturase gene of a nonaflatoxigenic Aspergillus parasiticus field isolate affects conidiation and sclerotial development.
نویسندگان
چکیده
AIMS To investigate how linoleic acid affects conidial production and sclerotial development in a strictly mitotic Aspergillus parasiticus field isolate as related to improving biocompetitivity of atoxigenic Aspergillus species. METHODS AND RESULTS We disrupted A. parasiticusDelta12-oleic acid desaturase gene (odeA) responsible for the conversion of oleic acid to linoleic acid. We examined conidiation and sclerotial development of SRRC 2043 and three isogenic mutant strains deleted for the odeA gene (DeltaodeA), either with or without supplementing linoleic acid, on one complex potato dextrose agar (PDA) medium and on two defined media: nitrate-containing Czapek agar (CZ) and Cove's ammonium medium (CVN). The DeltaodeA mutants produced less conidia than the parental strain on all media. Linoleic acid supplementation (as sodium linoleate at 0.3 and 1.2 mg ml(-1)) restored the DeltaodeA conidial production comparable to or exceeding the unsupplemented parental level, and the effect was medium dependent, with the highest increase on CVN and the least on PDA. SRRC 2043 and the DeltaodeA mutants were unable to produce sclerotia on CVN. On unsupplemented PDA and CZ, DeltaodeA sclerotial mass was comparable to that of SRRC 2043, but sclerotial number increased significantly to two- to threefold. Supplementing linoleic acid to media, in general, tended to decrease wild type and DeltaodeA sclerotial mass and sclerotial number. CONCLUSIONS Linoleic acid stimulates conidial production but has an inhibitory effect on sclerotial development. The relationship between the two processes in A. parasiticus is complex and affected by multiple factors, such as fatty acid composition and nitrogen source. SIGNIFICANCE AND IMPACT OF STUDY Conditions that promote sclerotial development differ from those required to promote maximum conidial production. Manipulation of content and availability of linoleic acid at different fungal growth phases might optimize conidial and sclerotial production hence increasing the efficacy of biocompetitive Aspergillus species.
منابع مشابه
Characterization of the Aspergillus parasiticus delta12-desaturase gene: a role for lipid metabolism in the Aspergillus-seed interaction.
In the mycotoxigenic oilseed pathogens Aspergillus flavus and Aspergillus parasiticus and the model filamentous fungus Aspergillus nidulans, unsaturated fatty acids and their derivatives act as important developmental signals that affect asexual conidiospore, sexual ascospore and/or sclerotial development. To dissect the relationship between lipid metabolism and fungal development, an A. parasi...
متن کاملCharacterization of the Aspergillus parasiticus D-desaturase gene: a role for lipid metabolism in the Aspergillus–seed interaction
Received 1 April 2004 Revised 16 June 2004 Accepted 24 June 2004 In the mycotoxigenic oilseed pathogens Aspergillus flavus and Aspergillus parasiticus and the model filamentous fungus Aspergillus nidulans, unsaturated fatty acids and their derivatives act as important developmental signals that affect asexual conidiospore, sexual ascospore and/or sclerotial development. To dissect the relations...
متن کاملAspergillus parasiticus crzA, Which Encodes Calcineurin Response Zinc-Finger Protein, Is Required for Aflatoxin Production under Calcium Stress
Two morphologically different Aspergillus parasiticus strains, one producing aflatoxins, abundant conidia but few sclerotia (BN9) and the other producing O-methyl-sterimatocystin (OMST), copious sclerotia but a low number of conidia (RH), were used to assess the role of crzA which encodes a putative calcium-signaling pathway regulatory protein. Under standard culture conditions, BN9DeltacrzA mu...
متن کاملA novel Delta12-fatty acid desaturase gene from methylotrophic yeast Pichia pastoris GS115.
The methylotrophic yeast Pichia pastoris GS115, a widely used strain in production of various heterologous proteins, especially membrane-bound enzymes, can also produce linoleic and linolenic acids, which indicates the existence of membrane-bound Delta12 and Delta15-fatty acid desaturases. This paper describes the cloning and functional characterization of a novel Delta12-fatty acid desaturase ...
متن کاملLoss of msnA, a Putative Stress Regulatory Gene, in Aspergillus parasiticus and Aspergillus flavus Increased Production of Conidia, Aflatoxins and Kojic Acid
Production of the harmful carcinogenic aflatoxins by Aspergillus parasiticus and Aspergillus flavus has been postulated to be a mechanism to relieve oxidative stress. The msnA gene of A. parasiticus and A. flavus is the ortholog of Saccharomyces cerevisiae MSN2 that is associated with multi-stress response. Compared to wild type strains, the msnA deletion (∆msnA) strains of A. parasiticus and A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied microbiology
دوره 97 6 شماره
صفحات -
تاریخ انتشار 2004